Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Aquat Toxicol ; 268: 106868, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38387248

RESUMO

Worldwide production of alkyl phenols and ethoxylated alkyl phenols is high due to their broad industrial uses. It has been widely documented that they are endocrine disruptors, and it has been suggested that they could exert neurotoxic effects. However, a lack of information about the neurotoxic effects of APs and APEs prevails. In this study, the bisphenol A (BPA), 4-nonylphenol (NP), and 3­tert-butylphenol (tertBP) effects on brain and spinal cord of Nile tilapia exposed to environmental concentrations were evaluated by assessing acetylcholinesterase (AChE), butyrylcholinesterase (BuChE), and carboxylesterases (CES) activities, and γ-aminobutyric acid (GABA) levels and their effects were evaluated by molecular docking. BPA and NP, tertBP behave as agonists and antagonists of AChE, BuChE, CES, and GABA, with notable differences among organs. However, none of these compounds or their metabolites interact with the enzymes' catalytic triad, suggesting an indirect alteration of enzymatic activities. While inhibiting these enzymes stand out hydrophobic interactions with the peripheral anion site, contacts with the inner face of the active site and blocking the mouth of the gorge of the active site, and steric hindrance in the enzyme pocket of glutamate decarboxylase (GAD). In contrast, inductions probably are by homotropic pseudo-cooperative phenomenon, where APEs behave as anchors favoring the active site to remain open and interactions that confer a conservative stabilization of the regulatory domain. Although the results of this study are complex, with notable differences between organs and toxicants, they are some of the first evidence of the neurotoxicity of alkylphenols and their ethoxylated derivatives.


Assuntos
Ciclídeos , Hominidae , Poluentes Químicos da Água , Animais , Butirilcolinesterase/metabolismo , Ciclídeos/metabolismo , Fenol , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Poluentes Químicos da Água/toxicidade , Fenóis/toxicidade , Compostos Benzidrílicos/toxicidade , Hominidae/metabolismo , Ácido gama-Aminobutírico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...